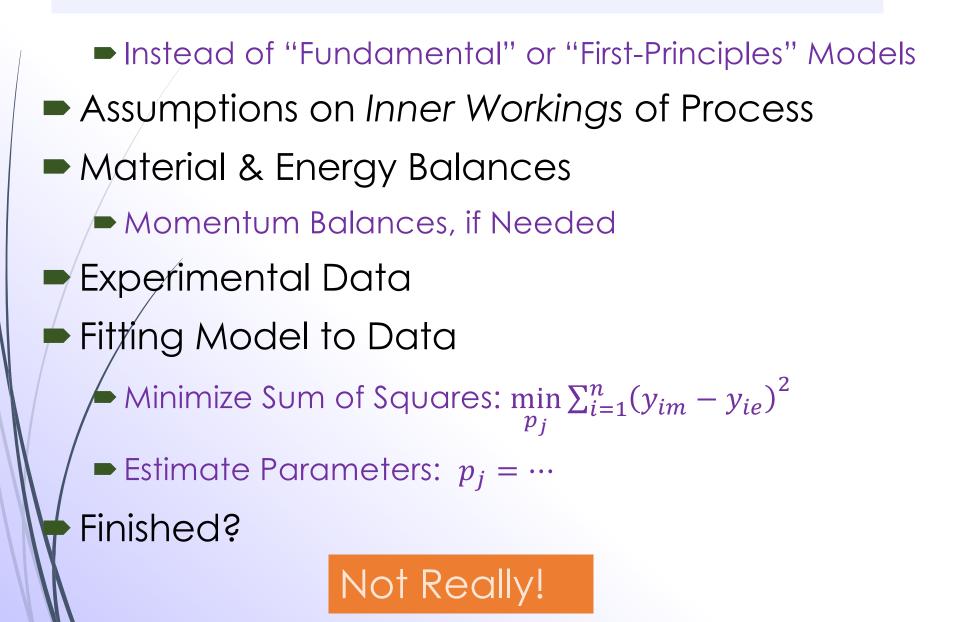
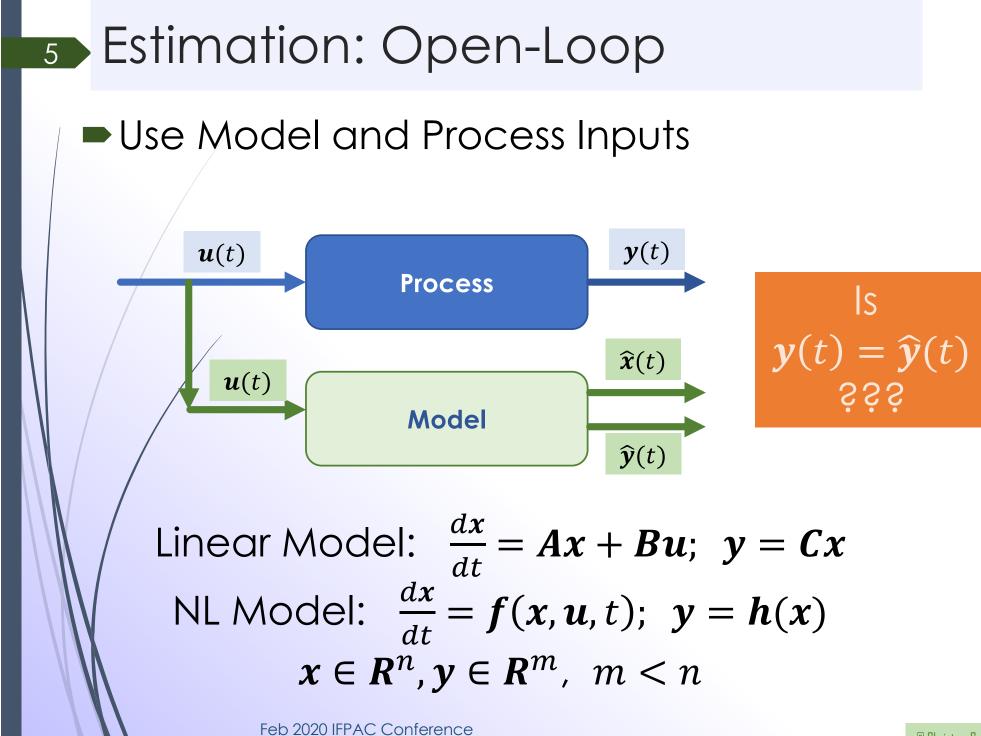
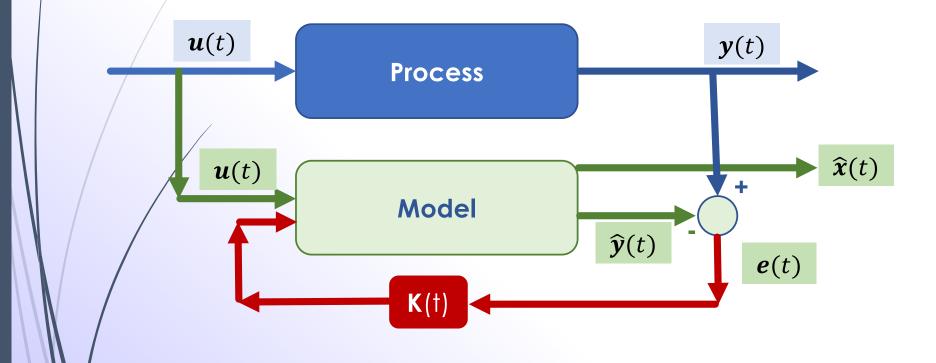
Systematic Design of Extended Kalman Filters Using Knowledge-Driven Models


Professor Christos Georgakis,

Systems Research Institute and Department of Chemical and Biological Engineering **Tufts University**, Medford, MA 02155


Knowledge-Driven Models
Open-Loop & Closed-Loop Estimation
Optimal On-Line Estimation – Kalman Filter
The Math – A Very Brief Summary
Design Rules – Simple Logic
Performance Through Examples

3 Knowledge-Driven Models


MUST Also Consider

ARE Parameters Significant? $p_i = 1.2 \pm 0.2$ **NOT** $p_i = 1.2 \pm 2.2$ Has Model Represented ALL Data? • Minimum SS \cong Normal Variability • Minimum SS = SS_{reg} Normal Variability = SS_{pe} • Vack-of-Fit: $SS_{reg} \cong SS_{pe}$ is it **OK**? IF NOT: Revise Model IF YES: Calculate Covariance Matrix: C_p

6 Estimation: Closed-Loop

Use Model and Process Inputs & OUTPUTS

Select K so that $\widehat{y}(t) \rightarrow y(t) \& \widehat{x}(t) \rightarrow x(t)$

Feb 2020 IFPAC Conference

Design Questions: Q(t), P(0) & R

- They Are $n \times n$, $n \times n$ & $m \times m$, Matrices
 - n $x_i(t)$ States --- m $y_j(t)$ Outputs
- Many Authors Think them as Tuning Parameters
 - ▶ If n=10, m=3 \rightarrow 209 parameters
 - ▶ If n=50, m=10 \rightarrow 5100 parameters
 - Impossible and Unnecessary Task
 - There is only ONE Uncertainty
 - Relative Accuracy of Model vs. Measurements
 - Relative Aggressiveness in Correcting Model
 - Call if ψ .. Needs Tuning

8 Kalman Filter Math

• Process: $\dot{x} = f(x, u, p) + w(t)$; $y = h(x) + v(t_k)$ $\mathbf{P} \mathbf{x}(0) \sim (\widetilde{\mathbf{x}}_0, \mathbf{P}_0), \ \mathbf{w}(t_k) \sim (\mathbf{0}, \mathbf{Q}_k), \ \mathbf{v}(t_k) \sim (\mathbf{0}, \mathbf{R}_k)$ Model Parameters: \mathbf{P}_0 : Uncertainty, How Close is $\tilde{\mathbf{x}}_0$ to Real $\mathbf{x}(0)$ • IF in Doubt: Use Larger $P_0 = diag\{p_{11,0}, p_{22,0}, \dots, p_{nn,0}\}$ \mathbf{P}_{k} : Uncertainty on Model's Accuracy -- Will Calculate Rk: Accuracy of Measurements -- We Know • Propagation $t_k \rightarrow t_{k+1}^-$ (Before Measurement Update) $\widehat{\boldsymbol{x}}(t_k^-) = \widehat{\boldsymbol{x}}(t_k^+) + \int_{t_{k-1}}^{t_k} f(\widehat{\boldsymbol{x}}, \boldsymbol{u}, \boldsymbol{p}) d\tau \; ; \; \widehat{\boldsymbol{y}}(t_k) = \; \boldsymbol{h}(\widehat{\boldsymbol{x}}(t_k^-))$ Model Update $\widehat{\mathbf{x}}(t_k^+) = \widehat{\mathbf{x}}(t_k^-) + \psi \mathbf{K}\{\mathbf{y}(t_k) - \widehat{\mathbf{y}}(t_k)\} \text{ ... Usually } \psi = 1$ But K = ??? $\mathbf{P} \mathbf{K} = \mathbf{0} \dots \mathbf{IF} \mathsf{Model} \mathsf{is} \dots \mathsf{Perfect}$

9 Uncertainty Propagation & K =

•
$$P(t_k^-) = P(t_{k-1}^+) + \int_{t_{k-1}}^{t_k} \{AP + PA^T + Q\} d\tau$$

• $A(t) = \partial f / \partial x \quad C(t) = \partial h / \partial x$
• $P(t_k^+) = P(t_k^-) + \delta P(t_k^-)$
• $\delta P(t_k^-) = \text{Reduction in Uncertainty} = g(P, C, K)$
• Due to Measurements
• Then
• $K = P(t_k^-)C^T \{CP(t_k^-)C^T + R\}^{-1}$
• Balancing Model $P(t_k^-)$ vs. Measurements R
• Optimal Solution for Linear Systems
• WE Are DONE !!!

🖸 Christos. Georgakis

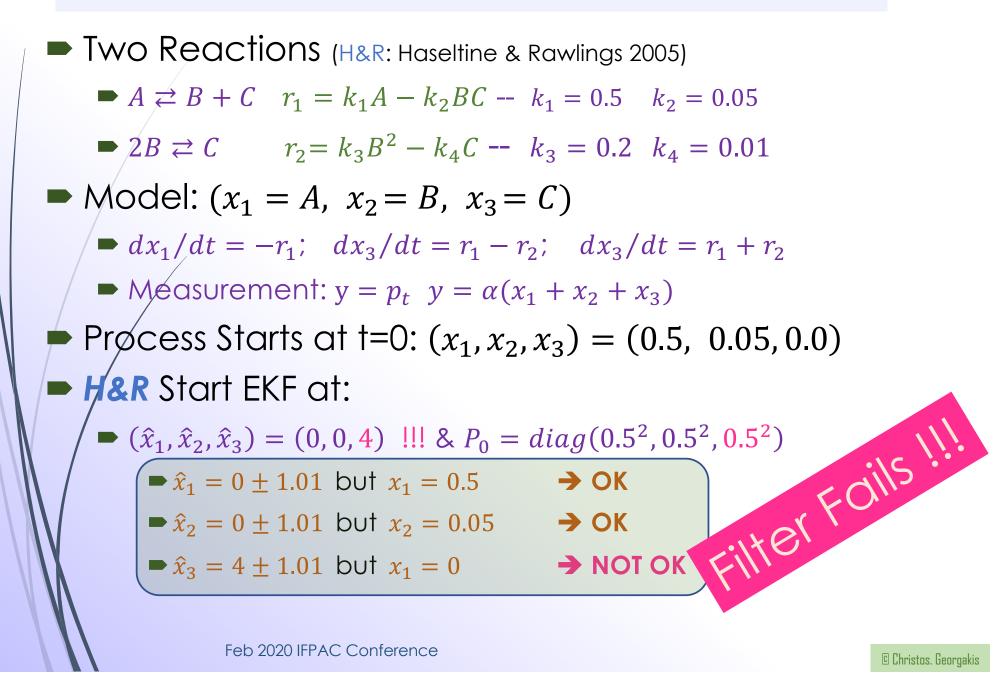
10 The Calculation of Q_k

- Model with Parameters $\dot{\hat{x}} = f(\hat{x}, u, \hat{p})$
 - Estimated from Data: \hat{p} and C_p (Covariance)
- Let $J(t) = \partial f(x, u, \hat{p}) / \partial \hat{p}$

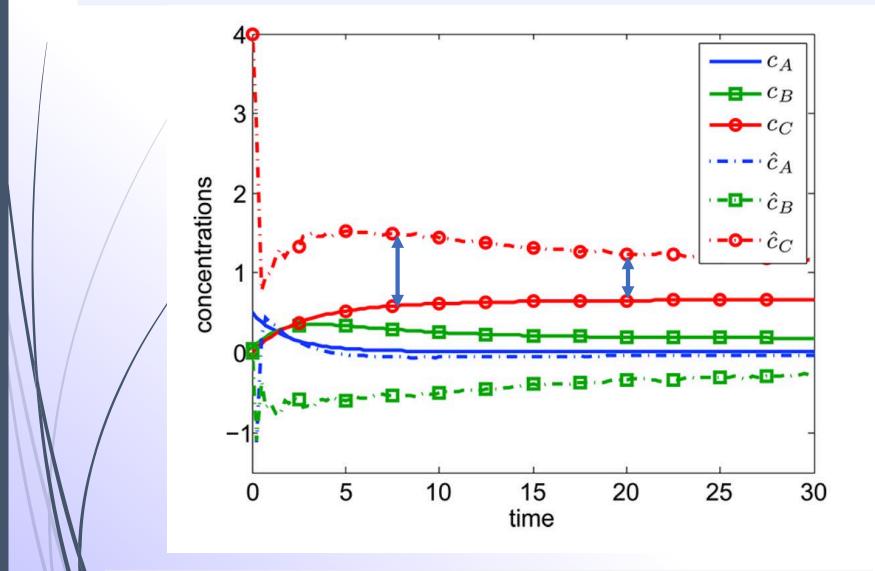
Th T

$$\boldsymbol{Q}(t) = J^T(t)\boldsymbol{C}_p J(t)$$

- Ready TO Estimate $\hat{x}(t)$ from Measurement $y(t_k)$
 - IF System IS Observable
 - For Linear Systems: rank $[C^T|C^TA^T|..|C^T(A^T)^{n-1}]=n$

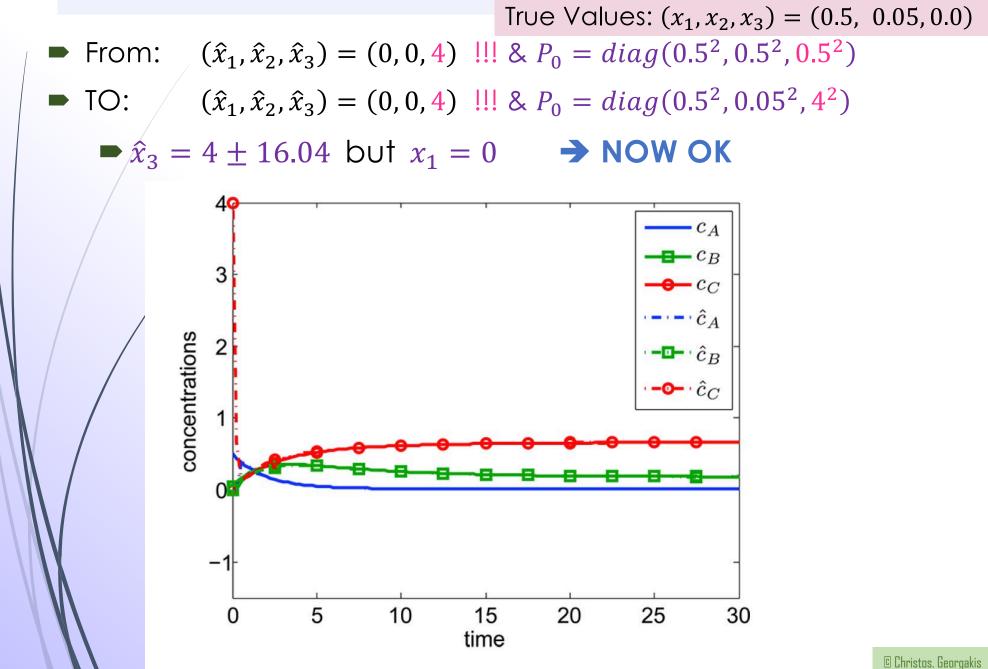

Valappil & Georgakis (2000) AIChE J. 46, p. 292

Feb 2020 IFPAC Conference


Is my System Observable?

Example 1: Small Reaction System 4 Species with 2 Reactions Measure T(t) and Estimate 4 Compositions Can it Be Done? YES IF Both Reactions Affect Energy Balance Example 2: Large Reaction System 14 Species with 5 Reactions Measure T(t) and Estimate 14 Compositions Can it Be Done? In Principle YES ... IF ALL Rxs Affect Energy Balance → We are asking **TOO** Much

12 Batch Reactor - Example

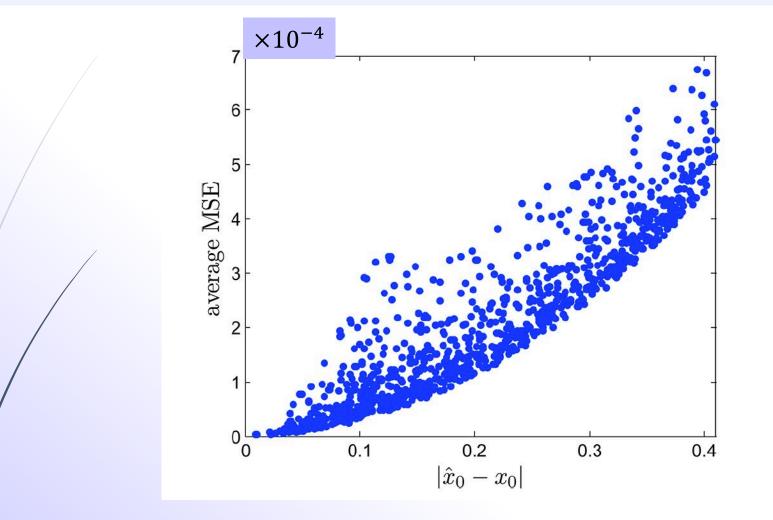


EKF Fails: $\hat{C}(\infty) \neq C(\infty)$ 13

- Haseltine & Rawlings (2005): Ind. & Eng. Chem. Res. 44, p. 2451
- Schneider & Georgakis (2013): "How To NOT Make the Extended Kalman Filter Fail" Ind. & Eng. Chem. Res. 52, p. 3354

Select P(0) Correctly

15 1000 Simulations with 2 P(0)s


Table 1. Number of Converging Runs and Estimation ErrorStatistics^a

	$diag(P_0)$		conv. runs	avg MSE	min MSE	max MSE	std MSE
0.5^{2}	0.5^{2}	0.5^{2}	205	0.3331	0.0803	0.4331	0.1218
0.5^{2}	0.05^{2}	4 ²	1000	0.0468	0.0465	0.0478	0.0002
^a Ear asch choice of the discourd D matrix 1000 EVE muse with							

^{*a*}For each choice of the diagonal P_0 matrix, 1000 EKF runs with different measurement noise realizations were performed.

The **P**(0) Value is Important If in Doubt, Select a Larger Value.

Estimation Error vs. Initial Error

Same Can Be Said about the **Q** Matrix

Feb 2020 IFPAC Conference

17 KFs or EKFs: What Holds You Back?

- Do You have a Knowledge-Driven Model ?
 - If YES, Use a KF or EKF
 - If NOT, then What?
- Develop a Data-Driven Model
 - Using ML or "Deep" Learning
- Use Design of Dynamic Experiments (DoDE)
 Georgakis (2013) I&ECR.
 - Use Dynamic Response Methodology (DRSM)
 - Klebanov & Georgakis (2016) I&ECR.
 - More Publications with Pfizer and Merck Colleagues.

Thank You Very Much for Your Attention