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Types of Models
´Knowledge-Driven Models

´Instead of “Fundamental” or “First Principles”
´Data-Driven Models

´No knowledge of Inner Workings of Process
´Hybrid Models

´Partial Knowledge  +  Data
´Models Should Have a Purpose

´Change the Purpose è Change the Model
´Models for Kinetics, Process Design, Optimization, Control 

…
´Conceptual, Physical (Pilot Plant), Mathematical, …
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Plethora of Robotic Devices
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If You have One … Million $

The Age of Big Data  
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Design Experiments - Analyze Data

´ Very Powerful Methodology 50 Years Young!
´ Never Change One Condition at a time
´ Full Factorial Designs, 
´ Fractional Factorial Designs, 
´ ½ fraction: 2n-1

´ ¼ fraction: 2n-2

´ 1/8 fraction: 2n-3

´ Center Composite Designs 
´ …
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Design of Experiments (DoE)

Is DoE Sufficient? 
My Answer is: NO



1st Generalization: DoE è DoDE

´Time-Varying Inputs (Factors)
´Design of Dynamic Experiments (DoDE)

´Batch Reactor Temperate vs. Time, T(t)=?

´Feeding of Bioreactor with Sugar Source, u(t)=?

´Bioreactor pH vs. Time, pH(t)=?

´How Many Dynamic Experiments?
´How we Design them? 
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Georgakis, C., (2013) “Design of Dynamic Experiments: A Data-Driven 
Methodology for the Optimization of Time-Varying Processes”

Ind. Eng. Chem. Res. 52 (35):12369-12382



´RSM: Response Surface Methodology
´ Interpolative Polynomial Model of Output

´𝑦 = 𝛽! + ∑"#$
% 𝛽"𝑋" + ∑"#$

% ∑&#"'$
% 𝛽"&𝑋"𝑋& + ∑"#$

% 𝛽""𝑋"(

´Composition Measurements every Hour
´ For 12 hrs è 12 RSMs ??

´DRSM: Dynamic Response Surface Method
𝑦 𝑡 = 𝛽! 𝑡 + ∑"#$% 𝛽" 𝑡 𝑋" +

∑"#$% ∑&#"'$% 𝛽"&(𝑡)𝑋"𝑋& +∑"#$% 𝛽""(𝑡)𝑋"(

´𝛽) 𝑡 = 𝛾),$𝑃! 𝑡 + 𝛾),(𝑃$ 𝑡 +⋯𝛾),+𝑃+,$ 𝑡
´𝑃" 𝑡 the ith Shifted Legendre Polynomial
´𝑃! = 1, 𝑃$ 𝑡 = −1 + 2𝑡, 𝑃( 𝑡 = 1 − 6𝑡 + 6𝑡(

2nd Generalization: RSM è DRSM
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DoDE: Time-Varying Inputs
´Define Time-Varying Input Domain
´Define Time-Varying Coded Variable, z(τ)

u0 (τ ) =
umax (τ )+ umin (τ )

2

Δu(τ ) = umax (τ )− umin (τ )
2

 

z(τ ) = u(τ )− u0 (τ )
Δu(τ )

−1≤ z(τ ) ≤ +1, τ = t / tb
u(τ ) ! u0 (τ )+ Δu(τ )z(τ )

u0 (τ )

umax (τ )

umin (τ )

Main Idea: 𝑧 𝜏 = 𝑎!𝑃" 𝜏 + 𝑎#𝑃! 𝜏 + 𝑎$𝑃# 𝜏 +⋯
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Nine (9) Time-Varying Inputs
𝑧 𝜏 = 𝑎!𝑃" 𝜏 + 𝑎#𝑃! 𝜏
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𝑎!

𝑎!

−1 ≤ 𝑎! ± 𝑎" ≤ +1 ⇔ −1 ≤ 𝑧(𝜏) ≤ +1

𝑢(𝜏)

𝜏

𝜏 = ⁄𝑡 𝑡#



DoDE Example: Batch Reactor
Reversible Reaction in Batch  

𝐴! ⇌ 𝐴# (15 < T < 50 oC)
𝒓 = 𝒌𝟏𝑨𝟏 − 𝒌𝟐𝑨𝟐 𝑘$ = 𝑘$% exp − &!

'(
𝑤𝑖𝑡ℎ 𝐸) > 𝐸*
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Model-based Optimum Conversion:
Decreasing Temperature Profile

TOpt

uOpt

A1opt, A2opt

74.6%



´Two Factors: T Level & Linear Slope
´Nine DoDE Experiments 

´Linear in Time 

´between 150C to 500C

´Optimization: 
´Max DoDE Conversion

´x=74.3%,  
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DoE DoDE MBO
Conversion 71.4% 74.3% 74.6%

Difference from MBO 3.2 0.3
VERY Small 
Difference

74.6%



DoDE  Semi-Batch Reactor 
Reaction Example:
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!

DoDE Runs: Feeding B

!

Optimal  Runs

𝑚𝑎𝑥 𝐶"(𝑡#)

𝑚𝑎𝑥 ⁄𝐶"(𝑡#) 𝑡#

𝑅𝑥𝑛1: 𝐴 + 𝐵 ⟶ 𝐶 𝑟! = 𝑘!𝐶$𝐶%, 𝑘! = 2 𝑙 𝑚𝑜𝑙&!ℎ&!
𝑅𝑥𝑛2: 2𝐵 ⟶ 𝐷, 𝑟" = 𝑘"𝐶%", 𝑘"= 1 𝑙 𝑚𝑜𝑙&!ℎ&!
𝑅𝑥𝑛3: 𝐶 ⟶ 𝐸, 𝑟! = 𝑘'𝐶( , 𝑘'= 1 ℎ&!



DoDE: The Dow Project

´Polymerization è Increase Productivity
´ NO Detailed Knowledge-Driven Process Model

´ Inputs (factors) Can Vary with Time

15 DoDE experiments è Batch Time Reduced by 20%
Productivity Increase by 20%
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The DRSM Idea
´ From RSM: 

´ 𝑦 = 𝛽% + ∑$2*3 𝛽$𝑋$ + ∑$2*3 ∑42$5*3 𝛽$4𝑋$𝑋4 + ∑$2*3 𝛽$$𝑋$)

´ To DRSM:
´ 𝑦 𝑡 = 𝛽% 𝑡 + ∑$2*3 𝛽$ 𝑡 𝑋$ +

∑$2*
3 ∑42$5*

3 𝛽$4(𝑡)𝑋$𝑋4 + ∑$2*
3 𝛽$$(𝑡)𝑋$)

´ Parameterization: 
´ 𝛽6 𝑡 = 𝛾6,*𝑃% 𝑡 + 𝛾6,)𝑃* 𝑡 + ⋯𝛾6,'𝑃'8* 𝑡

´ 𝑞 = 𝑖, 𝑖𝑗, 𝑜𝑟 𝑖𝑖 with  𝑖, 𝑗 = 1, 2, … , 𝑛; 𝑗 < 𝑖

´ 𝑅(parameters) < 𝐾(Data per Experiment)
´ DRSM-1: Parametrization with t ➡ Has Oscillations
´ DRSM-2: Parametrization with 𝜽 = 1 − exp(− !

!)
)

´ 0 ≤ 𝑡 < ∞ ⟺ 0 ≤ 𝜃 < 1
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NO Oscillations - Excellent Model



DRSM-2c for ALL Pfizer Data: C1(t)
´ Time-Resolved Species 1 Measurements with 
´ 𝑦 𝑡 = 𝛽% 𝑡 + ∑$2*

3 𝛽$ 𝑡 𝑋$ + ∑$2*
3 ∑42$5*

3 𝛽$4(𝑡)𝑋$𝑋4 + ∑$2*
3 𝛽$$(𝑡)𝑋$)

´ 𝑅 = 3, 𝑡9 = 3.3 All 17 experiments
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DRSM-2c for ALL Pfizer Data: C5(t)

´Species 5: 𝑅 = 5, 𝑡! = 5.4
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DRSM-2c for ALL Pfizer Data: C7(t)

´Species 7: 𝑅 = 3, 𝑡! = 5.4
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DRSM-2c: Missing Pfizer Data: C1(t)

´Species 1: 𝑅 = 3, 𝑡! = 3.3
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DRSM-2c: Missing Pfizer Data: C5(t)

´Species 5: R=3 Tc=3.3
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DRSM-2c: Missing Pfizer Data: C7(t)

´Species 7: R=3 Tc=3.3
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DRSM-2 vs DRSM-1 - Non-equidistant Data

VERY Notable Improvement
U of Pisa Lecture - April 2019



Species E  with Prediction Interval
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Model is VERY Accurate



´ 3 Species and 5 Factors: A, B, C, D, and E 
´ 2 Blocks: Robotic & Manual
´ 6 Data/Batch at Unequal Intervals

0, 20, 40, 60,   120,         240 mins
´ LC area converted to concentration

The 5 FACTORS 
A: Methanol ratio, (% wt/wt solvent) 
B: Starting material, wt%        C: Base, wt%           
D: Water wt%                           E: Temperature 

Fractional Factorial Design (Merck)
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• ¼ Fractional factorial design:  25 − 2 design
• 8 experiments
• Aliasing Structure:  D = AB,  and  E = AC



2FI Model: Species B 
LoF p-value = 0.99 è Perfect model

7𝑦 𝑡 = 𝛽% 𝑡 + 𝛽: 𝑡 𝐴 + 𝛽; 𝑡 𝐵 + 𝛽< 𝑡 𝐶 + 𝛽= 𝑡 𝐷 + 𝛽& 𝑡 𝐸 +
+𝜷𝑩𝑪 𝒕 𝑩𝑪 + 𝜷𝑪𝑫 𝒕 𝑪𝑫
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2FI Model: Species A 
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LoF p-value = 0.99 è Perfect model



2FI Model: Species C 

Block Effect Insignificant: Robotic vs. Manual Operation
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7𝑦 𝑡 = 𝛽% 𝑡 + 𝛽: 𝑡 𝐴 + 𝛽; 𝑡 𝐵 + 𝛽< 𝑡 𝐶 + 𝛽= 𝑡 𝐷 + 𝛽& 𝑡 𝐸 +
+𝜷𝑩𝑪 𝒕 𝑩𝑪 + 𝜷𝑪𝑫 𝒕 𝑪𝑫

LoF p-value = 0.06 è Good Model



DRSM ⟹ Reaction Knowledge

´ Simple Semi-Batch Reactor Example
´ Five DRSMs for 𝐶$ 𝑡 , … , 𝐶* 𝑡 ,

è H
𝑅1: 𝐴 + 𝐵 → 𝐶
𝑅2: 2𝐵 → 𝐷
𝑅3: 𝐶 → 𝐸
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From DRSM Models DISCOVER Stoichiometry and Kinetics

from Data to … Knowledge

𝑦$ 𝑡 = 𝛽$+ 𝑡 +L
,-!

.

𝛽$, 𝑡 𝑋, +L
,-!

.

L
/-,0!

.

𝛽$,/(𝑡)𝑋,𝑋/ +L
,-!

.

𝛽$,,(𝑡)𝑋,"

⋮
⋮

𝑦* 𝑡 = 𝛽*+ 𝑡 +L
,-!

.

𝛽*, 𝑡 𝑋, +L
,-!

.

L
/-,0!

.

𝛽*,/(𝑡)𝑋,𝑋/ +L
,-!

.

𝛽*,,(𝑡)𝑋,"

� Calculate Derivatives with Time for ALL Models

𝑦$1 𝑡 = 𝛽$+1 𝑡 +L
,-!

.

𝛽$,1 𝑡 𝑋, +L
,-!

.

L
/-,0!

.

𝛽$,/1 (𝑡)𝑋,𝑋/ +L
,-!

.

𝛽$,,1 (𝑡)𝑋,"



Rate Data  ⟹ Stoichiometry
´ Rates of appearance for Each Species

´ 𝑫! =

𝑟"!(𝑡#) 𝑟$!(𝑡#) 𝑟%!(𝑡#) 𝑟&!(𝑡#) 𝑟'!(𝑡#)
⋮ ⋮ ⋮ ⋮ ⋮

𝑟"!(𝑡() 𝑟$!(𝑡() 𝑟%!(𝑡() 𝑟&!(𝑡() 𝑟'!(𝑡()
⋮ ⋮ ⋮ ⋮ ⋮

𝑟"!(𝑡)!) 𝑟$!(𝑡)!) 𝑟%!(𝑡)!) 𝑟&!(𝑡)!) 𝑟'!(𝑡)!)

𝑡( = 𝑖∆𝑡
𝑖 = 1,… , 𝑛*
∆𝑡 = 1/𝑛*

´ For 𝑛* = 100 matrix 𝐷! is a 100×5

´ Data Matrix for Rates of ALL Species and ALL Experiments: 𝑅9

´ 𝑹+ =

𝑫#
𝑫,
⋮

𝑫)-

𝐷! = Data from 𝑘−th experiment
𝑘 = 1, 2, … , 𝑛-

´ For  𝑛- = 9 experiments 𝑅+ is a 900×5 matrix 

´ SVD=Singular Value Decomposition of 𝑹9

´ 𝑹+= 𝑼𝜮𝑽. , Σ =
𝜎# 0 0
0 ⋱ 0
0 0 𝜎/

, 𝑼𝜮𝑽. 𝑠𝑖𝑧𝑒𝑠: 900𝑋5, 5𝑋5 & 5𝑋5
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è A
𝑅𝑥𝑛1: 𝐴 + 𝐵 → 𝐶
𝑅𝑥𝑛2: 2𝐵 → 𝐷
𝑅𝑥𝑛3: 𝐶 → 𝐸

Number of 
Significant SVs = ?



SVD: 𝑹- = 𝑼𝜮𝑽. & Projections

´ # of Reactions ⟺ Significant 𝜎O Values= 3

´ 𝑹+ = 𝑼𝟑𝜮1𝑽12 𝑽12 =
𝒗#2

𝒗,2

𝒗12
=

0.41 0.84 −0.26 −0.21 −0.15
−0.26 0.21 0.79 −0.23 0.50
0.60 −0.28 0.01 0.44 −0.61

´ IS (-1,-1,1,0,0) a Linear Combination of the 𝑽𝟑𝑻 rows ?
´ Projection Matrix: 𝑃 = 𝑽$R𝑽$
´ Projection of Candidate Stoichiometry: 𝒏OS = 𝒏O𝑽$R𝑽$
´ Is it TRUE that: 𝒏OS ≅ 𝒏O ?
´ Projection Score: 𝑃𝑆 = 100 1 − ⁄𝒏OS −𝒏O 𝒏O

´PS ≥ 90 is GOOD
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Initial & Sequential Projections
´PREPARATION of Data

´Rate Data Matrix 𝑹M of size 𝑛N×𝑛O
´𝑛N = # of Data,   𝑛O = # of species 

´Number of Significant Singular Values (sSVs)
´Statistical Determination via an F-test = 𝑛OOPO

´Malinowski, J. of Chemometrics. 1989; 3(1):49-60

´Define Candidate Stoichiometries
´ INITIAL Projection Step

´Calculate Projection Scores (PC)
´Accept 𝑛$ Reactions with PC≥90

´ Subtract from Rate Data Contribution of Identified 
Rxns

´SEQUENTIAL Projection Step: Repeat above
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Identifying Pfizer Stoichiometries 
Additive error = 0.005 on Concentrations 0.005 < 𝐶, 𝑡2 < 0.9

Scores of 
True reactions

1 A + BD C + D 96.5
2 C " D + E 90.8
3 E " F 92.3
4 B + D D G 99.1
5 G " D + H 96.3
6 A + F " I 82.4
7 2A " J 77.4
8 B + J " 2E + I 24.8

Scores of 
Untrue reactions 

1 A " J 57.6
2 C " J 38.8
3 2A + B " J 72.5
4 J " 2D + I 65.0
5 B + J " E + I 21.2
6 B + J " D + I 51.2

Blind Test: Excellent Result

Seven (7) Significant SVs via an F-test
𝜎, = 81, 9.7, 6.3, 1.5, 1.0, 0.92, 0.22, 0.18, 0.15, 0.09
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Scorei=100 1 − ⁄𝒏$Q − 𝑛$ 𝒏$
𝒏$= Candidate Stoichiometry

𝒏$Q= Response Vector

Dw



Identifying Pfizer Stoichiometries 

Scores of Untrue reactions
(Without Measurement error)

1 A " J 74.6
2 C " J 57.3
3 2A + B " J 81.9
4 J " 2D + I 82.0
5 B + J " E + I 85.8
6 B + J " D + I 88.6

Scores of True reactions
(Without Measurements Error)

1 A + BD C + D 99.5
2 C " D + E 99.0
3 E " F 99.5
4 B + D D G 99.9
5 G " D + H 99.5
6 A + F " I 99.9
7 2A " J 97.9
8 B + J " 2E + I 92.7 Confirmation of Method

NO Measurement error

Eight (8) Significant SVs
𝜎, = 81, 9.7, 6.3, 1.5, 1.0, 0.91, 0.19, 0.10, 0.04, 0.02
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Dw



DRSM and TFA 
´DRSM Makes TFA More Accurate 

´Larger Number of  Significant Singular Values
´Identifies More Reactions

´With Stoichiometries Identified
´Calculate Rates of Each Reaction 
´Reaction Rates & 𝐶O 𝑡 èKinetics 

´One Reaction at a Time è MORE Accurate Model

´DRSM Enables Other Tasks
´e.g.  Optimal Operating Conditions
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Process Optimization via DRSM
´Calculate Operating Window (OW): 

´Concentrations of Impurities Below Specs
´Reactants

´Intermediates

´Unwanted by-products

´Maximize OW by Selecting
´Operating Conditions

´Account for Uncertainties
´Peak or Area HPLC Data

Time
C

om
p

os
iti

on

Operating 
Window

Reactant

Unwanted 
by-product

Intermediate:
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Maximize Operating Window
´Optimization Results

´When 𝛿Z = 0.1 for all species, 
´window does not exist.

´Study different specifications

𝛿3 Factor1 Factor2 Factor3 Optimal 
window (hr)

0.14 Infeasible ---
0.15 90 1.02 0 3.07
0.16 90 1.03 0.06 4.35
0.17 90 1.03 0.17 4.59
0.18 90 1.03 0.28 4.81
0.19 90 1.03 0.39 5.01
0.2 90 1.03 0.50 5.20

𝑡"

𝑡#
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Operating 
Window
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´The Novelty of DoDE and DRSM
´TWO Generalizations of DoE and RSM 

´DoDE: Experiments with Time Varying Inputs

´DRSM: Modeling Time-Varying Outputs

´Stoichiometric Identification Enhanced
´Some Current Issues

´Implications of Unmeasured Species

´Not Enough Candidate Stoichiometries

What to Remember Tomorrow
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Thank You Very Much
May I answer your Questions


