

Optimal Time Sampling Strategy in Pharmaceutical Reactions for the Estimation of Accurate DRSM Models

Yachao Dong¹, Christos Georgakis¹, Jason Mustakis², Ke Wang², Joel Hawkins², Jonathan P. McMullen³ and Kevin Stone³

¹Tufts University, System Research Institute

²Pfizer Worldwide R&D

³ Merck & Co., Inc., Process Research and Development

Nov. 12, 2019, AIChE Annual Meeting, Orlando, FL

1. Background & Methodology □DRSM model

□Existing time strategies

2. Newly Proposed Strategy □ Reduction of correlation

 \Box Equidistant in θ

3. Numerical Results, Comparing

Diagonal DominanceUncertainty Volume

Big Data of Dynamic Response Models

Tufts Response Surface Methodology (RSM)

Quadratic form:

$$\tilde{y} = \beta_0 + \sum_{i=1}^n \beta_i x_i + \sum_{i=1}^n \sum_{j=1}^{i-1} \beta_{ij} x_i x_j + \sum_{i=1}^n \beta_{ii} x_i^2$$

- \tilde{y} : Modeled output
- *x_i*: Factors of DoE
- *β*: Coefficient in the model
 Estimated by regression

Not Time-Resolved

Tufts Dynamic Response Surface Methodology (DRSM)

Time as an independent variable: n i-1

Klebanov, Georgakis. *Ind. Eng. Chem. Res.* **2016**, *55* (14), 4022-4034. Wang, Georgakis. *Ind. Eng. Chem. Res.* **2017**, *56* (38), 10770-10782. Dong, Georgakis, Mustakis, Hawkins, Lu, Wang, McMullen, Grosser, Stone. *Ind. Eng. Chem. Res.* **2019**, *, 58* (30), 13611-13621.

Latest DRSM Model:

$$\tilde{y}(\theta) = \beta_0(\theta) + \sum_{i=1}^n \beta_i(\theta) x_i + \sum_{i=1}^n \sum_{j=1}^i \beta_{ij}(\theta) x_i x_j$$

Parametrization with Shifted Legendre Polynomials

$$\beta_i(\theta) = \sum_{r=0}^{R} \gamma_{i,r} P_r(\theta), \forall i = 0, 1, \dots, n, \dots$$

 $P_0(\theta) = 1 \quad P_1(\theta) = -1 + 2\theta \quad P_2(\theta) = 1 - 6\theta + 6\theta^2$

Has been successfully used for:

Stoichiometry IdentificationProcess Optimization

Parameters of Model

- Global: $R \& t_c \to BIC$ criterion
- Local: $\gamma_{i,r} \rightarrow$ Lasso regression

Add Knowledge-driven Constraints

Tufts Existing Time Strategies

- Strategy S1: equidistant in time
 - t=[1, 2, ..., 9, 10]
- Strategy S2: first double, later on stable
 - t=[0.06, 0.12, 0.25, 0.5, 1, 2, 4, 6, 8, 10]
- Other strategy in literature*:
 - Sampling time leading to even distribution along concentration
 - Assumes monotonic concentration change

Question to answer: What is the best strategy for an accurate model?

*Rothenberg, Boelens, Iron, Westerhuis. *Catalysis Today* **2003**, *81* (3), 359-367.

II. Proposed Strategy

Equidistant in θ

- Reduction of Correlation
- Reduction of Estimator Uncertainty

• 2FI DRSM model:

$$y = \beta_0(\theta) + \sum_{i=1}^n \beta_i(\theta) x_i + \sum_{i=1}^n \sum_{j=i}^n \beta_{ij}(\theta) x_i x_j$$
$$\beta_i(\theta) = \sum_{r=0}^R \gamma_{i,r} P_r(\theta), \forall i = 0, 1, \dots, n, \dots$$

• Important matrix:

$$\boldsymbol{M} = \begin{pmatrix} P_0(\theta_1) & P_1(\theta_1) & \cdots & P_R(\theta_1) \\ P_0(\theta_2) & P_1(\theta_2) & \cdots & P_R(\theta_2) \\ \vdots & \vdots & \ddots & \vdots \\ P_0(\theta_N) & P_1(\theta_N) & \cdots & P_R(\theta_N) \end{pmatrix}$$

• For experiment k:

$$\mathbf{X}(k) \equiv [\mathbf{I}_{R+1} \quad x_1(k)\mathbf{I}_{R+1} \quad \dots \quad x_{n-1}(k)x_n(k)\mathbf{I}_{R+1}]$$

• Fisher information matrix:

$$F = \sum_{i=1}^{K} X^{T}(i) M^{T} M X(i)$$

$$B = M^{T} M$$

F: related to Variance of parameters

- Sampling time affects
 Covariance through *B*
- Orthogonal DoE + Diagonal $B \rightarrow$ Parameters γ NOT Correlated

ts Comparative Indicators

$$\boldsymbol{M} = \begin{pmatrix} P_0(\theta_1) & P_1(\theta_1) & \cdots & P_R(\theta_1) \\ P_0(\theta_2) & P_1(\theta_2) & \cdots & P_R(\theta_2) \\ \vdots & \vdots & \ddots & \vdots \\ P_0(\theta_N) & P_1(\theta_N) & \cdots & P_R(\theta_N) \end{pmatrix} \boldsymbol{B} = \boldsymbol{M}^T \boldsymbol{M}$$

Wishes for **B**:

- Non-diagonal elements as small as possible $\Rightarrow \gamma$ parameters uncorrelated
 - Indicator 1: Diagonal Dominance. $DD = \max_{i \in 1,...,R+1} \frac{\sum_{j \in 1,...,R+1 \setminus i} |Q_{ij}|}{|Q_{ii}|}$
 - $DD < 1 \Leftrightarrow$ diagonal dominant, prefer smaller DD
- Maximize determinant ⇒ minimize overall estimation variance
 - Indicator 2: Uncertainty Volume, $UV = \frac{1}{\frac{R+1}{\sqrt{\det(|\mathbf{B}|)}}}$
 - Prefer smaller *UV*

Equidistant in theta

 $\Box \theta_1 = \theta_X / N, \theta_2 = 2\theta_X / N, \cdots, \theta_N = \theta_X$

DBack-calculate in time $t_1 \cdots t_N$, and round off

 $\theta = 1 - \exp(-t/t_c)$

With this approach:

 $\square N \rightarrow \infty \Rightarrow B$ is diagonal

 $\Box N$ is finite $\Rightarrow B$ is highly diagonal dominant

Need to estimate time constant t_c , based on at least one experiment

□Through simple DRSM formulation

\Box For monotonical change, $t_c \approx$ slope of time against $\ln(y)$

Tufts Examples of Sampling Time (12 samples)

S1: Equidistant in Time

 $[t_1,\cdots,t_{12}]=[1,2,...,12]$

S2: First Double, Later on Stable

 $[t_1, \dots, t_{12}] = [0.1, 0.2, 0.4, 0.8, 1.6, 3, 4.5, 6, 7.5, 9, 10.5, 12]$

S3: Equidistant in Theta

 $[t_1, \cdots, t_{12}] = [0.3, 0.7 \ 1.1, 1.5, 2.0, 2.6, 3.2, 4.0, 5.0, 6.3, 8.2, 12]$ $\square \text{Assuming } t_c = 4$

III. Numerical Results

- 1. Independent of DoE
- 2. Specific case study based on DoE

Tufts Comparative Indicators (DoE-Independent)

$$\boldsymbol{M} = \begin{pmatrix} P_0(\theta_1) & P_2(\theta_1) & \cdots & P_R(\theta_1) \\ P_0(\theta_2) & P_2(\theta_2) & \cdots & P_R(\theta_2) \\ \vdots & \vdots & \ddots & \vdots \\ P_0(\theta_N) & P_2(\theta_N) & \cdots & P_R(\theta_N) \end{pmatrix} \quad \boldsymbol{B} = \boldsymbol{M}^T \boldsymbol{M}$$

Indicators

- Diagonal Dominance (DD)
- Uncertainty Volume (UV)
- Prefer strategies of smaller values

Consider the example with *R*=3 and *N*=12

Strategy S1: equidistant in time							
	/ 12	5.31	1.15	0.08			
P –	5.31	4.77	2.17	-0.14			
D –	1.15	2.17	2.16	0.78			

Strategy S2: first double, later on stable

\0.08

$$\boldsymbol{B} = \begin{pmatrix} 12 & 0.56 & 2.96 & -0.91 \\ 0.56 & 5.97 & -0.32 & 1.06 \\ 2.96 & -0.32 & 3.06 & -0.45 \\ -0.91 & 1.06 & -0.45 & 1.73 \end{pmatrix}$$
$$\boldsymbol{DD} = 1.40 \ \boldsymbol{UV} = 0.26$$

-0.14 0.78

DD=1.89 UV=0.57

1.23

Strategy S3: equidistant in theta

$$\boldsymbol{B} = \begin{pmatrix} 12 & 0.35 & -0.60 & 0.26 \\ 0.35 & 3.59 & 0.29 & -0.57 \\ -0.60 & 0.29 & 1.95 & 0.21 \\ 0.26 & -0.57 & 0.21 & 1.28 \end{pmatrix}$$
$$\boldsymbol{DD} = 0.81 \ \boldsymbol{UV} = 0.32$$

S1: Equidistant in Time S2: First Double Then Stable

S3: Equidistant in Theta

S1

S2

S3

12

- *DD* **S3** better than **S1** and **S2**
- *UV* **S3** and **S2** are similar, both better than **S1**

S3: no significant improvement with more than 6 or 7 samples

Tufts Matrix B of Higher Order (*R*=8)

Fufts Covariance Matrix (Orthogonal Design)

S3 leads to the smallest correlation

Tufts Covariance Matrix (Orthogonal Design)

$$y = \beta_0(\theta) + \sum_{i=1}^n \beta_i(\theta) x_i + \sum_{i=1}^n \sum_{j=i}^n \beta_{ij}(\theta) x_i x_j$$
$$\beta_i(\theta) = \sum_{r=0}^R \gamma_{i,r} P_r(\theta), \forall i = 0, 1, \dots, n, \dots$$

The difference manifests in each block Representing one beta function

Tufts Covariance Matrix (Central Composite Design)

CCD is not orthogonal

Again, S3 leads to the smallest correlation

S Confidence Interval Size

S1: Equidistant in Time S2: First Double Then Stable

Confidence Interval								
Species	Reference (mol/L)	Change in percentage (%)						
	Strategy S1	Strategy S2	Strategy S3					
	12 samples	12 samples	12 samples	7 samples				
1	0.0025	-22	-9	-7				
2	0.0036	-1	-5	7				
3	0.0023	-4	-12	-12				
4	0.0040	-32	-17	-14				
5	0.0023	3	-27	4				
6	0.0049	-12	-11	13				
7	0.0025	-1	-1	8				
8	0.0016	5	-4	-16				
9	0.0014	0	-16	-8				
10	0.0010	-2	-20	4				
Average over species	0.0026	-6	-12	-2				

S3: Equidistant in Theta

S3: Smallest Confidence Interval

○ 12 Samples: S3 < S2 < S1
○ S3 (7 samples) ≈ S1 (12 samples)

• S3: $t_c = 3.4$

□ Average values of over species

Confidence interval averaged over:
 27 experiments, 100 time instants

- DRSM Model Accurately Predicts Dynamic Response Data
- We Proposed a New Sampling Strategy
- Basic Idea: Equidistant in Theta

□ Reduces Correlation of Estimated Parameters

Reduces Overall Uncertain Volume

Thank you for Your Attention!