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1. Background	&	Methodology
qDRSM	model
qExisting	time	strategies

2. Newly	Proposed	Strategy
qReduction	of	correlation
qEquidistant	in	θ

3. Numerical	Results,	Comparing
qDiagonal	Dominance
qUncertainty	Volume
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Plethora	of	Robotic	Devices
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Big	Data	of	Dynamic	Response											Models

www.unchainedlabs.com



Response	Surface	Methodology	(RSM)

Quadratic	form:
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• !𝑦:		 Modeled	output
• 𝑥":	 Factors	of	DoE
• 𝛽:	 Coefficient	in	the	model

Estimated	by	regression
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)𝑦

𝑥! 𝑥"Not	Time-Resolved



Dynamic	Response	Surface	Methodology	(DRSM)
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One	DRSM	Model
Each	species

Time	as	an	independent	variable:
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Klebanov, Georgakis. Ind. Eng. Chem. Res. 2016, 55 (14), 4022-4034.
Wang, Georgakis. Ind. Eng. Chem. Res. 2017, 56 (38), 10770-10782.
Dong, Georgakis, Mustakis, Hawkins, Lu, Wang, McMullen, Grosser, Stone. Ind. Eng. Chem. Res. 2019, , 58 (30), 13611-13621.



DRSM	Formulation
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Latest	DRSM	Model:
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Parametrization	with	Shifted	Legendre	Polynomials

𝛽% 𝜃 = 1
)&$

*

𝛾%,)𝑃) 𝜃 , ∀𝑖 = 0,1, … , 𝑛, …

𝑃$ 𝜃 = 1 𝑃! 𝜃 = −1 + 2𝜃 𝑃" 𝜃 = 1 − 6𝜃 + 6𝜃"

𝜃 = 1 − exp(− ⁄𝑡 𝑡,)

Parameters	of	Model
• Global:	R &	𝑡! → BIC	criterion
• Local:	𝛾",$ → Lasso	regression
Add	Knowledge-driven	Constraints

Has	been	successfully	used	for:
qStoichiometry	Identification
qProcess	Optimization

Variable:	t→ 𝜽



Existing	Time	Strategies

• Strategy	S1:	equidistant	in	time	
• t=[1,	2,	…,	9,	10]

• Strategy	S2:	first	double,	later	on	stable	
• t=[0.06,	0.12,	0.25,	0.5,	1,	2,	4,	6,	8,	10]

• Other	strategy	in	literature*:	
• Sampling	time	leading	to	even	distribution	along	concentration
• Assumes	monotonic	concentration	change
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Question	to	answer:	
What	is	the	best	strategy	for	an	accurate	model?

*Rothenberg,	Boelens,	Iron,	Westerhuis.	Catalysis	Today	2003, 81 (3),	359-367.



II.	Proposed	Strategy
Equidistant	in	θ

• Reduction	of	Correlation

• Reduction	of	Estimator	Uncertainty



Key:	Matrix	B
• 2FI		DRSM	model:
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• Important	matrix:

𝑴 =
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• For	experiment	k:	
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• Fisher	information	matrix:	
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F: related	to	Variance	of	parameters 9

• Sampling	time	affects	
Covariance	through	B

• Orthogonal	DoE	+	Diagonal	B→
Parameters	𝛾 NOT	Correlated

𝑩 = 𝑴𝑻𝑴



Comparative	Indicators
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𝑴 =

𝑃$ 𝜃! 𝑃! 𝜃! ⋯ 𝑃* 𝜃!
𝑃$ 𝜃" 𝑃! 𝜃" ⋯ 𝑃* 𝜃"
⋮ ⋮ ⋱ ⋮

𝑃$ 𝜃- 𝑃! 𝜃- ⋯ 𝑃* 𝜃-

𝑩 = 𝑴𝑻𝑴

Wishes	for	B:

• Non-diagonal	elements	as	small	as	possible⇨	𝛾 parameters	uncorrelated

• Indicator	1:	Diagonal	Dominance.	𝐷𝐷 = 𝑚𝑎𝑥
"∈',…,)*'

∑3∈5,…,785\: ,:3
,::

• 𝐷𝐷 < 1⇔	diagonal	dominant,	prefer	smaller	DD

• Maximize	determinant	⇨	minimize	overall	estimation	variance
• Indicator	2:	Uncertainty	Volume,	𝑈𝑉 = '

785 -./( 𝑩 )

• Prefer	smaller	UV



New	Approach

Equidistant	in	theta
q𝜃$ = 𝜃c/𝑁, 𝜃( = 2𝜃c/𝑁,⋯ , 𝜃d = 𝜃c
qBack-calculate	in	time	𝑡$⋯𝑡d,	and	round	off

With	this	approach:
q𝑁 → ∞⇨	𝑩 is	diagonal
qN is	finite	⇨	B is	highly	diagonal	dominant

Need	to	estimate	time	constant	𝑡e ,	based	on	at	least	one	experiment
qThrough	simple	DRSM	formulation
qFor	monotonical	change,	𝑡e ≈ slope	of	time	against	ln(𝑦)
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𝜃 = 1 − exp(− ⁄𝑡 𝑡!)



Examples	of	Sampling	Time	(12	samples)
S1:	Equidistant	in	Time	

𝑡', ⋯ , 𝑡'3 =	[1,	2,	…,	12]	

S2:	First	Double,	Later	on	Stable	

𝑡', ⋯ , 𝑡'3 =[0.1,	0.2,	0.4,	0.8,	1.6,	3,	4.5,	6,	7.5,	9,	10.5,	12]	

S3:	Equidistant	in	Theta

𝑡', ⋯ , 𝑡'3 =	[0.3,	0.7	1.1,	1.5,	2.0,	2.6,	3.2,	4.0,	5.0,	6.3,	8.2,	12]	
qAssuming	𝑡, = 4
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S1

S2
S3



III.	Numerical	Results
1. Independent	of	DoE

2. Specific	case	study	based	on	DoE



Comparative	Indicators	(DoE-Independent)
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𝑴 =

𝑃! 𝜃" 𝑃# 𝜃" ⋯ 𝑃$ 𝜃"
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𝑩 = 𝑴𝑻𝑴

Indicators
• Diagonal	Dominance	(DD)	

• Uncertainty	Volume	(UV)
• Prefer	strategies	of	smaller	values

Consider	the	example	with	𝑅=3	and	N=12	

Strategy	S1:	equidistant	in	time	

𝑩 =
12 5.31 1.15 0.08
5.31 4.77 2.17 −0.14
1.15 2.17 2.16 0.78
0.08 −0.14 0.78 1.23
DD=1.89	UV=0.57

Strategy	S2:	first	double,	later	on	stable

𝑩 =

12 0.56 2.96 −0.91
0.56 5.97 −0.32 1.06
2.96 −0.32 3.06 −0.45
−0.91 1.06 −0.45 1.73
DD=1.40	UV=0.26

Strategy	S3:	equidistant	in	theta

𝑩 =

12 0.35 −0.60 0.26
0.35 3.59 0.29 −0.57
−0.60 0.29 1.95 0.21
0.26 −0.57 0.21 1.28
DD=0.81	UV=0.32

S1

S2
S3

Better

UV

DD



Varying	Number	of	Samples	(R=3)

• DD S3 better	than	S1 and	S2

• UV S3 and	S2 are	similar,	both	better	than	S1
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Diagonal	Dominance Uncertainty	Volume

S1:	Equidistant	in	Time S2:	First	Double	Then	Stable S3:	Equidistant	in	Theta

S3:	no	significant	improvement	with	more	than	6	or	7	samples



Matrix	B	of	Higher	Order	(R=8)
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Strategy	S1
Equidistant	in	Time

Strategy	S2:	
First	double,	then	stable

Strategy	S3:	
Equidistant	in	Theta

• Diagonal	Dominance S3 is	still	better
• Uncertainty	Volume S3 is	still	similar	to	S2,	better	than	S1

S1

S2S3

UV

DD

Better



• Simulated	case
• 10	species
• 8	linearly	independent	reactions

DoE-Dependent	Case	Studies
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• 3-factors
• Factor	1	 temperature 50	~90	°C
• Factor	2	 concentration	of		B	 0.8	~1.2	mol/L
• Factor	3 concentration	of		D 0~	2	mol/L

1 A	+	BD C	+	D
2 C	" D	+	E
3 E	" F
4 B	+	D	D G
5 G	" D	+	H
6 A	+	F	" I
7 2A	" J
8 B	+	J	" 2E	+	I

Factor	1
Fac
tor
	2

Fa
ct
or
	3

Factor	1
Fac
tor
	2

Fa
ct
or
	3

Full	factorial	Design
(Orthogonal)

Center	Composite	Design
(Non-Orthogonal)



Covariance	Matrix	(Orthogonal	Design)	
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S3	leads	to	the	smallest	correlation

Block	diagonal
Because	of	orthogonal	design

Strategy	S1
Equidistant	in	Time

Strategy	S2:	
First	double,	then	stable

Strategy	S3:	
Equidistant	in	Theta



Covariance	Matrix	(Orthogonal	Design)	
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The	difference	manifests	in	each	block	
Representing	one	beta	function

Enlarge

Strategy	S1
Equidistant	in	Time

Strategy	S2:	
First	double,	then	stable

Strategy	S3:	
Equidistant	in	Theta
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Covariance	Matrix	(Central	Composite	Design)	
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Again,	S3	leads	to	the	smallest	correlation
Not	Block	diagonal:
CCD	is	not	orthogonal

Enlarge

Strategy	S1
Equidistant	in	Time

Strategy	S2:	
First	double,	then	stable

Strategy	S3:	
Equidistant	in	Theta



Confidence	Interval	Size

Confidence	Interval

Species
Reference	(mol/L) Change	in	percentage	(%)

Strategy	S1 Strategy	S2 Strategy	S3
12	samples 12	samples 12	samples 7	samples

1 0.0025 -22 -9 -7
2 0.0036 -1 -5 7
3 0.0023 -4 -12 -12
4 0.0040 -32 -17 -14
5 0.0023 3 -27 4
6 0.0049 -12 -11 13
7 0.0025 -1 -1 8
8 0.0016 5 -4 -16
9 0.0014 0 -16 -8
10 0.0010 -2 -20 4

Average	
over	
species

0.0026 -6 -12 -2
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S3:	Smallest	Confidence	Interval

o12	Samples:	S3 <	S2 <	S1
o S3 (7	samples)	≈	S1 (12	samples)

• S3:	𝑡! = 3.4
q Average	values	of	over	species

• Confidence	interval	averaged	over:
q27	experiments,	100	time	instants

S1:	Equidistant	in	Time S2:	First	Double	Then	Stable S3:	Equidistant	in	Theta



Conclusions

• DRSM	Model	Accurately	Predicts	Dynamic	Response	Data
• We	Proposed	a	New	Sampling	Strategy
• Basic	Idea:	Equidistant	in	Theta

qReduces	Correlation	of	Estimated	Parameters
qReduces	Overall	Uncertain	Volume
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Thank	you	for	Your	Attention!


